POLYMORPHISM OF THE SUPEROXIDE DISMUTASE 2 AND CATALASE GENES IN CHILDREN WITH MULTIPLE CARIES IN HYPOXIA
DOI:
https://doi.org/10.35220/2523-420X/2022.2.7Keywords:
genetic polymorphism, multiple caries, hypoxia, iodine and fluoride deficiency.Abstract
The environment, which contains a complex of chemical, physical and biological factors, has a significant impact on the state of the human body, on its health. An important problem is the use of adaptation to hypoxia for the prevention and treatment of diseases, as well as increasing the body’s resistance to various adverse environmental factors. Purpose of the study. Evaluation of the effect of SoD2 +9T/s gene polymorphism Ala16Val rs4880, CAT C-262t rs1001179 in children in the development of multiple caries under hypoxia conditions. Materials and methods of research. Genotyping was performed in 15 children with multiple caries aged 2 to 6 years living in the mountainous region of the Transcarpathian region. The comparison group consisted of 10 children of the same age with low intensity of carious lesions living in the same area. The biological material for the study was DNA extracted from buccal epithelial cells. DNA isolation from epithelial cells was performed using a modified Chelex method. As a result of molecular genetic research it is shown that in hypoxia 13.3% of children with multiple caries and 10% of children with low caries intensity are carriers of SS genotype SOD2 gene, which causes low activity of superoxide dismutase 2, which leads to insufficient protection, and determines the need for antioxidant therapy. The minor T allele of the SAT gene was 10% in the main group and 5% in the comparison group with a low level of carious lesions living in the same area. Mutations responsible for the functioning of SOD-2, CAT, are prognostic adverse factors, predictors of multiple caries. This category of children needs constant close monitoring and control. The tendency to the protective effect of caries in functionally complete genotypes of SOD2 + 9T / C genes relative to heterozygous genotypes (HS = 2.67 and 2.25, respectively) was revealed.
References
Агаджанян Н.А. Горы и резистентность организма. Москва. Наука, 1970. 184 с.
Гипоксия и индивидуальные особенности реактивности / под ред. В.А. Березовского. Киев, 1978. С. 76–91.
Клембовский, А. И., Сухоруков В. С. Митохондриальная недостаточность у детей. Архив патологии. 1997. № 5. С. 3–7.
Jalevik, B., Noren J. G. Enamel hypomineralisation on permanent molars. Int. J. Paed. Dent. 2000. V 10. P. 278–289.
Калініченко Ю.А., Сіротченко Т.А Взаємозв’язок та взаємовплив стоматологічного та соматичного здоров’я дітей та підлітків як сучасна медико-соціальна проблема Здоровье ребенка. 2010. № 3(24). http://www.mif-ua.com/archive/article/12985
Плюхина, Т. П. Значение преморбидных факторов в развитии системной гипоплазии эмали постоянных зубов и частота осложнений ее кариесом у детей : автореф. дис. ... канд. мед. наук : 14.00.21. Москва. 2002. 24 с.
Суеркулов Э.С., Юлдашева Г.И., Чолокова Г.С., Юлдашев И.М. Усиление антиоксидантной защиты и ингибирование перекисного окисления липидов на фоне комплексного лечения детей с воспалительными заболеваниями слизистой оболочки полости рта. Здоровье ребенка. 2016. № 5 (73). С. 63–66
Jamhiri I., Saadat I., Omidvari S. Genetic polymorphisms of superoxide dismutase-1 A251G and catalase C-262T with the risk of colorectal cancer. Mol. Biol. Res. Commun. 2017. T. 6. № 2. C. 85–90.
Aguilar T.A.F., Navarro B.C.H., Pérez J.A.M. Endogenous Antioxidants: A Review of their Role in Oxidative Stress. A Master Regulator of Oxidative Stress – The Transcription Factor Nrf2. : InTech, 2016.
Ighodaro O.M., Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 2018. T. 54. № 4. C. 287-293.
P. Sean Walsh, David A. Metzger, Russell Higuchi. Chelex 100 as a Medium for Simple Extraction of DNA for PCR-Based Typing from Forensic Material. BioTechniques. 2013. V. 54. № 3. Р. 134–139.
Rosenblum J.S., Gilula N.B., Lerner R.A. On signal seq uence polymorphisms and diseases of distribution. Proc. Nat. Acad. Sci. 1996. Vol. 93, №9. P. 4471–4473.
Bastaki M. et al. Genotype-activity relationship for Mn-superoxide dismutase, glutathione peroxidase 1 and catalase in humans. Pharmacogenet. Genomics. 2006. Vol. 16, № 4. P. 279–286.
Bresciani G., Cruz I.B., de Paz J.A., Cuevas M.J., Gonzalez-Gallego J. The MnSOD Ala16Val SNP: relevance to human diseases and interaction with environmental factors. Free Radic Res. 2013. № 47. Р. 781–92. 10.3109/10715762.2013.836275
Беденюк О.С., Корда М.М. Роль оксидативного і нітрооксидативного стресу в патогенезі генералізованого пародонтиту на фоні хронічного гастриту. Оригінальні дослідження. 2016. № 4(18). С. 11–15.
Hegde A.M., Rai K., Padmanabhan V. Total antioxidant capacity of saliva and its relation with early childhood caries and rampant caries. J. Clin. Pediatr. Dent. 2009. Vol. 33. P. 231–234.
Ковач І. В., Кравченко Л. І. Стан антиоксидантної системи порожнини рота у дітей з хронічним рецидивуючим афтозним стоматитом в динаміці лікування. Інновації в стоматології. 2016. № 3. С. 29–33.